Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург






НазваниеМетодические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург
страница1/6
Дата публикации06.02.2015
Размер1.01 Mb.
ТипМетодические указания
top-bal.ru > Экономика > Методические указания
  1   2   3   4   5   6


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ



Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени С.М. Кирова»





Кафедра управления, автоматизации и системного анализа
МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

Методические указания по выполнению лабораторных работ

для студентов специальности 080100 «Экономика»


Санкт-Петербург

2014

Рассмотрены и рекомендованы к изданию

учебно-методической комиссией факультета экономики и управления

Санкт-Петербургского государственного лесотехнического университета

« » ______________________ 2014 г.


С о с т а в и т е л ь

доктор технических наук, профессор С.В.Гуров


^
О т в . р е д а к т о р

доктор технических наук, профессор Л.В.Уткин
Р е ц е н з е н т

кафедра управления, автоматизации и системного анализа

СПбГЛТУ

Методические указания содержат описание и правила выполнения лабораторных работ по дисциплине «Методы оптимальных решений» с использованием компьютерных технологий. Каждая из пяти лабораторных работ включает в себя составление математической модели экономической задачи линейной, дискретной и нелинейной оптимизации. Решение и исследование этих задач предполагается в среде MicroSoft Excel.
Если бы рекламодатели потратили

рекламный бюджет продукта на его

улучшение, он не нуждался бы в

рекламе.

Уилл Роджерс

ВВЕДЕНИЕ
Настоящее учебное руководство предназначено студентам факультета экономики и управления всех специальностей, изучающих дисциплину «Методы оптимальных решений». Оно содержит описание лабораторных работ по линейному, нелинейному и целочисленному программированию c использованием функций Microsoft Excel. Задание на каждую лабораторную работу включает в себя постановку задачи, необходимые сведения из теории, пример выполнения работы и содержание отчета. Целью лабораторных работ является обучение студентов математическим моделям и методам решения экономических задач, базирующихся на понятии оптимизации и требующих большого объема вычислительной работы.

Расчеты без помощи современных информационных технологий, как правило, являются сложными и требуют хорошего знания алгоритмов и методов оптимизации, что на наш взгляд не нужно для студентов-экономистов. Основой для обучения должно быть:

  • умение самостоятельно описывать реальные экономические задачи на языке математики, т.е. составлять математические модели;

  • применять для их решения надлежащие программные средства;

  • интерпретировать полученные результаты оптимизации;

  • проводить исследование математической модели и результатов решения.

Применение вычислительной техники и специализированных программ значительно сокращает время на выполнение расчетов, осуществляет автоматизацию громоздких вычислений. Изменяя исходные данные в задаче, студент имеет возможность почувствовать элемент новизны в изучаемом материале и в определенной степени управлять процессом вычислений.

Речь идет не о замене математического мышления программой, а о новом – несравненно более мощном виде исследования экономических задач, включающем такие средства, как удобство и быстрота расчетов, возможности варьирования исходных данных и автоматический пересчет результатов, большие графические возможности.

Задания являются индивидуальными для каждого студента, и он может получить их на сайте http://gurov.vs58.net/ в соответствии с порядковым номером студента в журнале преподавателя.

Отчет по каждому заданию должен быть выполнен в тетради для лабораторны работ. Его содержание приведено в заключительной части каждого задания данного руководства. В нем должны быть даны все необходимые пояснения и формулы Excel, используемые в работе. Распечатки по задачам вклеиваются в тетрадь. Студент получает зачет по лабораторной работе только после представления отчета и собеседования с преподавателем по теоретической части изучаемого раздела курса.
Лабораторная работа № 1

^ ОПТИМИЗАЦИЯ ПЛАНА ВЫПУСКА ПРОДУКЦИИ ПРИ ОГРАНИЧЕННЫХ РЕСУРСАХ
1.1. Задание на работу
Мебельная фабрика выпускает два вида изделий: шкафы и столы. В производстве применяется оборудование трех типов: фрезерные, сверлильные и шлифовальные станки. Нормы времени работы каждого вида оборудования в час, необходимые для изготовления одного изделия каждого вида, а также ресурсы рабочего времени для каждого вида оборудования, известны и приведены в табл. 1.1.

Т а б л и ц а 1.1


Оборудование

Затраты машинного времени на обработку единицы продукции, ч

Эффектив-ный фонд времени станков, ч

Цена за простой единицы оборудования, ден.ед.

Шкаф

Стол

(фрезерные станки)









(сверлильные станки)









(шлифовальные станки)









Прибыль от реализации единицы продукции, ден.ед.









Фабрика получает прибыль от изготовления и реализации одного шкафа в размере ден.ед. и одного стола – в размере ден.ед. Цена за простой 1 часа оборудования составляет ден.ед., . Эти данные содержатся в таблице.

Требуется определить план выпуска изделий каждого вида, при котором время работы оборудования не превышало бы допустимого фонда времени, и при этом

  • во-первых, была получена наибольшая общая прибыль;

  • во-вторых, был получен минимальный штраф за простой оборудования;

  • в третьих, была получена наибольшая общая прибыль с учетом штрафа за простой оборудования.

Для решения задачи необходимо выполнить следующие пункты:

1. Составить математическую модель задачи при условии, что критерием оптимальности является максимальная прибыль от изготовления и реализации продукции. Решить полученную задачу линейного программирования графически и с помощью процедуры «Поиск решения» программного средства Excel.

2. Составить математическую модель при условии, что критерием оптимальности является минимальный штраф за простой оборудования. Решить задачу в Excel.

3. Составить математическую модель при условии, что критерием оптимальности является максимум общей прибыли за вычетом штрафа за простой оборудования. Решить задачу в Excel.

4. Показать соответствие оптимальных планов с вершинами допустимой области.
^ 1.2. Сведения из теории
В общем виде задача оптимизации ставится следующим образом: требуется найти совокупность чисел , для которых функция

(1.1)

достигает наибольшего (наименьшего) значения, и при этом выполняются условия

. (1.2)

Функция (1.1) носит название целевой функции или функции цели, неравенства (1.2) образуют систему ограничений. В этой системе могут быть также неравенства вида , или равенства.

По смыслу задачи неизвестные , как правило, являются неотрицательными, то есть , . Эти условия могут содержаться среди неравенств (1.2), но могут также быть выписаны отдельно. Часть или даже все неизвестные задачи иногда должны быть целыми, тогда эти условия также включаются в систему ограничений.

Количество ограничений и число неизвестных характеризуют размерность задачи оптимизации.

Таким образом, в состав моделей оптимизации входят:

  • целевая функция, выражающая в математической форме поставленную цель с точки зрения выбранного критерия оптимальности;

  • система ограничений, то есть соотношения, которым должно удовлетворять решение данной задачи.

Любой набор переменных, удовлетворяющих системе ограничений, называется допустимым решением или планом. Совокупность всех допустимых решений называется допустимым множеством. Численные значения целевой функции позволяют определить качество различных допустимых решений в соответствии с выбранным критерием. Оптимальное решение (оптимальный план) представляет собой такое допустимое решение, при котором значение целевой функции достигает экстремальной величины.

Таким образом, если – оптимальное решение задачи на максимум, то выполняется неравенство для любого допустимого решения . В случае задачи на минимум имеет место неравенство противоположного смысла.

В зависимости от вида целевой функции и ограничительных условий в задачах оптимизации принято выделять следующие разделы:

  • линейное программирование, в котором целевая функция, а также уравнения и неравенства системы ограничений линейны;

  • квадратичное программирование, в котором целевая функция квадратична и выпукла, а допустимое множество определяется линейными равенствами и неравенствами;

  • выпуклое программирование, в котором целевая функция и допустимое множество выпуклы;

  • дискретное программирование, в котором допустимое множество дискретно, например, состоит из точек с целочисленными координатами;

  • сепарабельное программирование, в котором целевая функция и ограничения являются сепарабельными функциями, т.е. представляют собой сумму функций, каждая из которых зависит только от одной переменной;

  • динамическое программирование, в котором процесс оптимизации разбивается на ряд последовательных этапов;

  • стохастическое программирование, в котором информация о задаче оптимизации носит элементы неопределенности, и некоторые ее параметры являются случайными величинами.

Основным и важнейшим методом линейной оптимизации является в настоящее время симплексный метод или метод последовательного улучшения базисного плана. Метод был разработан Дж.Данцигом в 1949 году. Но еще раньше, в 1939 году, советским ученым академиком Л.В.Канторовичем для решения задач линейного программирования был предложен так называемый метод разрешающих множителей, незначительно отличающийся от симплексного метода. Симплекс-метод дает возможность решать задачи линейного программирования как вручную, так и на вычислительных машинах. Через конечное число шагов (симплексных таблиц) или получается оптимальное решение или обнаруживается неразрешимость задачи линейного программирования.

Для решения общей задачи нелинейной оптимизации существует довольно много алгоритмов, однако лишь немногие оказываются эффективными для задач большой размерности. Ни один из этих алгоритмов не имеет по отношению к другим таких преимуществ, чтобы его можно было считать универсальным средством решения любых задач нелинейного программирования. При сравнении алгоритмов следует использовать следующие критерии: надежность, скорость решения, время подготовки задачи для решения, точность решения, степень выполнения ограничивающих условий. Методы нелинейной оптимизации принято классифицировать в зависимости от порядка производных, которые используются для максимизации (минимизации) целевой функции:

  • методы нулевого порядка (методы поиска), при которых для поиска точки экстремума используются только значения целевой функции;

  • методы первого порядка, при которых используются значения целевой функции и ее первых частных производных;

  • методы второго порядка, при которых используются значения целевой функции и ее первых и вторых частных производных;

К методам поиска относятся: метод покоординатного спуска Пауэлла, метод Хука-Дживса, метод Розенброка, метод деформируемого многогранника (симплексный метод Нелдера и Мида) и его модификация в виде комплексного метода Бокса для нелинейной оптимизации с ограничениями, методы случайного поиска.

К методам 1-го порядка относятся градиентные методы, метод сопряженных направлений, метод переменной метрики (Дэвидона-Флетчера-Пауэлла).

К методам 2-го порядка относится метод Ньютона.

Характерной особенностью вычислительной стороны методов решения задач оптимизации является то, что практическое использование этих методов требует огромной вычислительной работы, которую без ЭВМ реализовать крайне трудно, а в ряде случаев – невозможно. В первую очередь это связано с тем, что задачи оптимизации, формализующие реальные производственные ситуации, являются задачами большой размерности, недоступными для ручного счета.

Практическую реализацию методов оптимизации для учебных задач невысокой размерности удобно проводить средствами табличного процессора Microsoft Excel. Вычислительные возможности оптимизации объединены здесь с большим набором функций, присущих текстовому и графическому редакторам и другим приложениям пакета Microsoft Office. Excel позволяет выполнять линейную и нелинейную оптимизацию (для достаточно гладких функций и , входящих в задачу), осуществлять прогнозирование и поддержку принятия решений.

Важное достоинство табличного процессора состоит в возможности автоматического пересчета всех данных, связанных функциональными зависимостями, при изменении любого компонента таблицы. Тем самым студент может в определенной степени управлять процессом оптимизации и принятия решений.
  1   2   3   4   5   6

Добавить документ в свой блог или на сайт

Похожие:

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания по выполнению контрольных работ для студентов...
Данные методические указания по выполнению контрольных работ по иностранному языку (английскому, немецкому, французскому) предназначены...

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания к выполнению контрольных работ по дисциплине «Информатика»
Методические указания предназначены для студентов-заочников специальностей: 2806, 2808, 1707, 2506. Дисциплина «вычислительная техника...

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания к изучению дисциплины и выполнению контрольных...
Методические указания и задания для выполнения контрольной работы по дисциплине «Макроэкономика»

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания по выполнению лабораторных работ (курс «Базы данных и знаний», часть 1)
Методические указания предназначены для студентов экономического и механико-математического факультетов. Здесь определены цели и...

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания по выполнению лабораторных работ в среде табличного...
В сборник вошли методические указания к выполнению следующих лабораторных работ в среде табличного процессора excel 2007

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания по выполнению лабораторных работ в среде табличного...
В сборник вошли методические указания к выполнению следующих лабораторных работ в среде табличного процессора excel 2003

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания и контрольные задания по дисциплине «Экономика организации»
Методические указания предназначены для выполнения контрольной работы по дисциплине «Экономика организации» для студентов заочной...

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания к выполнению курсовых работ по дисциплине:...
Негосударственное образовательное учреждение высшего професионального образования

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания и задания к выполнению контрольных работ по дисциплине «Экология»
Методические указания и задания к выполнению контрольных работ по дисциплине «Экология» для студентов заочной формы обучения специальности...

Методические указания по выполнению лабораторных работ для студентов специальности 080100 «Экономика» Санкт-Петербург iconМетодические указания и задания к контрольным работам составлены...
Тематика контрольных работ и методические указания по их выполнению для студентов заочной формы обучения по специальности



Школьные материалы


При копировании материала укажите ссылку © 2018
контакты
top-bal.ru

Поиск